Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Int J Mol Sci ; 25(7)2024 Apr 06.
Artigo em Inglês | MEDLINE | ID: mdl-38612894

RESUMO

With the ambition to identify novel chemical starting points that can be further optimized into small drug-like inhibitors of insulin-regulated aminopeptidase (IRAP) and serve as potential future cognitive enhancers in the clinic, we conducted an ultra-high-throughput screening campaign of a chemically diverse compound library of approximately 400,000 drug-like small molecules. Three biochemical and one biophysical assays were developed to enable large-scale screening and hit triaging. The screening funnel, designed to be compatible with high-density microplates, was established with two enzyme inhibition assays employing either fluorescent or absorbance readouts. As IRAP is a zinc-dependent enzyme, the remaining active compounds were further evaluated in the primary assay, albeit with the addition of zinc ions. Rescreening with zinc confirmed the inhibitory activity for most compounds, emphasizing a zinc-independent mechanism of action. Additionally, target engagement was confirmed using a complementary biophysical thermal shift assay where compounds causing positive/negative thermal shifts were considered genuine binders. Triaging based on biochemical activity, target engagement, and drug-likeness resulted in the selection of 50 qualified hits, of which the IC50 of 32 compounds was below 3.5 µM. Despite hydroxamic acid dominance, diverse chemotypes with biochemical activity and target engagement were discovered, including non-hydroxamic acid compounds. The most potent compound (QHL1) was resynthesized with a confirmed inhibitory IC50 of 320 nM. Amongst these compounds, 20 new compound structure classes were identified, providing many new starting points for the development of unique IRAP inhibitors. Detailed characterization and optimization of lead compounds, considering both hydroxamic acids and other diverse structures, are in progress for further exploration.


Assuntos
Aminopeptidases , Insulina , Ensaios de Triagem em Larga Escala , Insulina Regular Humana , Corantes , Ácidos Hidroxâmicos , Zinco
2.
Sci Rep ; 14(1): 6229, 2024 03 14.
Artigo em Inglês | MEDLINE | ID: mdl-38486006

RESUMO

Distinct platelet activation patterns are elicited by the tyrosine kinase-linked collagen receptor glycoprotein VI (GPVI) and the G-protein coupled protease-activated receptors (PAR1/4) for thrombin. This is reflected in the different platelet Ca2+ responses induced by the GPVI agonist collagen-related peptide (CRP) and the PAR1/4 agonist thrombin. Using a 96 well-plate assay with human Calcium-6-loaded platelets and a panel of 22 pharmacological inhibitors, we assessed the cytosolic Ca2+ signaling domains of these receptors and developed an automated Ca2+ curve algorithm. The algorithm was used to evaluate an ultra-high throughput (UHT) based screening of 16,635 chemically diverse small molecules with orally active physicochemical properties for effects on platelets stimulated with CRP or thrombin. Stringent agonist-specific selection criteria resulted in the identification of 151 drug-like molecules, of which three hit compounds were further characterized. The dibenzyl formamide derivative ANO61 selectively modulated thrombin-induced Ca2+ responses, whereas the aromatic sulfonyl imidazole AF299 and the phenothiazine ethopropazine affected CRP-induced responses. Platelet functional assays confirmed selectivity of these hits. Ethopropazine retained its inhibitory potential in the presence of plasma, and suppressed collagen-dependent thrombus buildup at arterial shear rate. In conclusion, targeting of platelet Ca2+ signaling dynamics in a screening campaign has the potential of identifying novel platelet-inhibiting molecules.


Assuntos
Cálcio , Fenotiazinas , Inibidores da Agregação Plaquetária , Humanos , Inibidores da Agregação Plaquetária/farmacologia , Cálcio/metabolismo , Trombina/metabolismo , Sinalização do Cálcio , Glicoproteínas da Membrana de Plaquetas/metabolismo , Receptor PAR-1/metabolismo , Plaquetas/metabolismo , Ativação Plaquetária , Cálcio da Dieta/farmacologia , Agregação Plaquetária
3.
SLAS Discov ; 27(6): 337-348, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35872229

RESUMO

A central challenge of antimalarial therapy is the emergence of resistance to the components of artemisinin-based combination therapies (ACTs) and the urgent need for new drugs acting through novel mechanism of action. Over the last decade, compounds identified in phenotypic high throughput screens (HTS) have provided the starting point for six candidate drugs currently in the Medicines for Malaria Venture (MMV) clinical development portfolio. However, the published screening data which provided much of the new chemical matter for malaria drug discovery projects have been extensively mined. Here we present a new screening and selection cascade for generation of hit compounds active against the blood stage of Plasmodium falciparum. In addition, we validate our approach by testing a library of 141,786 compounds not reported earlier as being tested against malaria. The Hit Generation Library 1 (HGL1) was designed to maximise the chemical diversity and novelty of compounds with physicochemical properties associated with potential for further development. A robust HTS cascade containing orthogonal efficacy and cytotoxicity assays, including a newly developed and validated nanoluciferase-based assay was used to profile the compounds. 75 compounds (Screening Active hit rate of 0.05%) were identified meeting our stringent selection criteria of potency in drug sensitive (NF54) and drug resistant (Dd2) parasite strains (IC50 ≤ 2 µM), rapid speed of action and cell viability in HepG2 cells (IC50 ≥ 10 µM). Following further profiling, 33 compounds were identified that meet the MMV Confirmed Active profile and are high quality starting points for new antimalarial drug discovery projects.


Assuntos
Antimaláricos , Malária , Antimaláricos/farmacologia , Descoberta de Drogas , Humanos , Luciferases , Malária/tratamento farmacológico , Plasmodium falciparum
4.
iScience ; 25(1): 103718, 2022 Jan 21.
Artigo em Inglês | MEDLINE | ID: mdl-35072010

RESUMO

Antiplatelet drugs targeting G-protein-coupled receptors (GPCRs), used for the secondary prevention of arterial thrombosis, coincide with an increased bleeding risk. Targeting ITAM-linked receptors, such as the collagen receptor glycoprotein VI (GPVI), is expected to provide a better antithrombotic-hemostatic profile. Here, we developed and characterized an ultra-high-throughput (UHT) method based on intracellular [Ca2+]i increases to differentiate GPVI and GPCR effects on platelets. In 96-, 384-, or 1,536-well formats, Calcium-6-loaded human platelets displayed a slow-prolonged or fast-transient [Ca2+]i increase when stimulated with the GPVI agonist collagen-related peptide or with thrombin and other GPCR agonists, respectively. Semi-automated curve fitting revealed five parameters describing the Ca2+ responses. Verification of the UHT assay was done with a robustness compound library and clinically relevant platelet inhibitors. Taken together, these results present proof of principle of distinct receptor-type-dependent Ca2+ signaling curves in platelets, which allow identification of new inhibitors in a UHT way.

6.
SLAS Discov ; 26(2): 192-204, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-32734803

RESUMO

The European Lead Factory (ELF) consortium provides European academics and small and medium enterprises access to ~0.5 million unique compounds, a state-of-the-art ultra-high-throughput screening (u-HTS) platform, and industrial early drug discovery (DD) expertise with the aim of delivering innovative DD starting points. From 2013 to 2018, 154 proposals for eight target classes in seven therapeutic areas were submitted to the ELF consortium, 88 of which were accepted by the selection committee. During this period, 76 primary assays based on seven different readout technologies were optimized and mainly miniaturized to 1536-well plates. In total, 72 u-HTS campaigns were carried out, and follow-up work including hit triage through orthogonal, deselection, selectivity, and biophysical assays were finalized. This ambitious project showed that besides the quality of the compound library and the primary assay, the success of centralized u-HTS of large compound libraries across many target classes, various assay types, and different readout technologies is also largely dependent on the capacity and flexibility of the automation on one hand and the hit-triaging phase on the other, particularly because of undesired compound-assay interference. Thus far, the delivered hit lists from the ELF consortium have resulted in spinoffs, patents, in vivo proof of concepts, preclinical development programs, peer-reviewed publications, PhD theses, and much more, demonstrating early success indications.


Assuntos
Descoberta de Drogas/métodos , Ensaios de Triagem em Larga Escala/métodos , Pesquisa , Automação , Biotecnologia/métodos , Desenho de Fármacos , Descoberta de Drogas/normas , Europa (Continente) , Ensaios de Triagem em Larga Escala/normas , Humanos , Revisão da Pesquisa por Pares , Parcerias Público-Privadas , Bibliotecas de Moléculas Pequenas
7.
Nat Chem Biol ; 9(11): 708-14, 2013 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-24013279

RESUMO

Large-scale analysis of cellular response to anticancer drugs typically focuses on variation in potency (half-maximum inhibitory concentration, (IC50)), assuming that it is the most important difference between effective and ineffective drugs or sensitive and resistant cells. We took a multiparametric approach involving analysis of the slope of the dose-response curve, the area under the curve and the maximum effect (Emax). We found that some of these parameters vary systematically with cell line and others with drug class. For cell-cycle inhibitors, Emax often but not always correlated with cell proliferation rate. For drugs targeting the Akt/PI3K/mTOR pathway, dose-response curves were unusually shallow. Classical pharmacology has no ready explanation for this phenomenon, but single-cell analysis showed that it correlated with significant and heritable cell-to-cell variability in the extent of target inhibition. We conclude that parameters other than potency should be considered in the comparative analysis of drug response, particularly at clinically relevant concentrations near and above the IC50.


Assuntos
Antineoplásicos/farmacologia , Neoplasias da Mama/tratamento farmacológico , Antineoplásicos/química , Neoplasias da Mama/patologia , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Relação Dose-Resposta a Droga , Feminino , Humanos , Relação Estrutura-Atividade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...